Тестер для проверки оптопар. Радиотехника, электроника и схемы своими руками. Оптопара PC817 принцип работы и очень простая проверка Фотообзор по изготовлению тестера

10.04.2024

Описание, характеристики, Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли , а во второй . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара (Оптрон) PC817

Краткие характеристики:

Корпус компактный:

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 - сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Проверка оптопары

Для быстрой проверки оптопары я провел несколько тестовых экспериментов. Сначала на макетной плате.

Вариант на макетной плате

В результате удалось получить очень простую схему для проверки PC817 и других похожих оптронов.

Первый вариант схемы

Первый вариант я забраковал по той причине что он инвертировал маркировку транзистора с n-p-n на p-n-p

Поэтому чтобы не возникало путаницы я изменил схему на следующую;

Второй вариант схемы

Второй вариант работал правильно но неудобно было распаять стандартную панельку

под микросхему

Панелька SCS- 8

Третий вариант схемы

Самый удачный

Uf — напряжение на светодиоде при котором начинает открываться фототранзистор.

в моем варианте Uf = 1.12 Вольт.

В результате получилась такая очень простая конструкция.

С помощью предлагаемого пробника можно проверить микросхемы NE555 (1006ВИ1) и различные оптоприборы: оптотранзисторы, оптотиристоры, оптосимисторы, опторезисторы. И именно с этими радиоэлементами простые методы не проходят, так как просто прозвонить такую деталь не получится. Но в простейшем случае можете провести испытание оптопары используя такую технологию:

С помощью цифрового мультиметра:


Здесь 570 - это милливольты, которые падают на открытом переходе к-э оптотранзистора. В режиме прозвонки диода измеряется напряжение падения. В режиме "диод" мультиметр на щупы выводит напряжение 2 вольта импульсное, прямоугольной формы, через добавочный резистор, и при подключении П-Н перехода, АЦП мультиметра измеряет напряжение падающее на нём.

Тестер оптронов и микросхем 555

Мы советуем потратить немного времени и сделать данный тестер, так как оптроны всё чаще используют в различных радиолюбительских конструкциях. А про знаменитую КР1006ВИ1 вообще молчу - её ставят почти везде. Собственно на проверяемой микросхеме 555 собран генератор импульсов, о работоспособности которого свидетельствует перемаргивание светодиодов HL1, HL2. Далее начинается пробник оптопар.


Работает он так. Сигнал с 3-й ножки 555 через резистор R9 попадает на один вход диодного моста VDS1, если к контактам А (анод) и К (катод) подключен исправный излучающий элемент оптопары, то через мост будет протекать ток, заставляя моргать светодиод HL3. Если принимающий элемент оптопары тоже исправен, то он будет проводить ток на базу VT1 открывая его в момент зажигания HL3, который будет проводить ток и HL4 тоже будет моргать.


P.S. Некоторые 555 не запускаютса с конденсатором в пятой ноге, но это не означает их неисправность, поэтому если HL1, HL2 не заморгали - замкните с2 накоротко, но если и после этого указанные светодиоды не стали мигать - то микросхема NE555 однозначно неисправна. Желаю удачи. С уважением, Андрей Жданов (Мастер665).

Инструкция

Если оптрон, исправность которого поставлена под , впаян в плату, необходимо отключить ее , разрядить на ней электролитические конденсаторы, а затем выпаять оптопару, запоминая, как она была впаяна.

Оптроны имеют разные излучатели (лампы накаливания, неоновые лампы, светодиоды, светоизлучающие конденсаторы) и разные приемники излучения (фоторезисторы, фотодиоды, фототранзисторы, фототиристоры, фотосимисторы). Также они цоколевкой. Поэтому необходимо найти данные о типе и цоколевке оптопары либо в справочнике или даташите, либо в схеме того прибора, где он был установлен. Нередко цоколевки оптрона нанесена прямо на плату этого прибора.Если прибор современный, можно почти наверняка быть уверенным, что излучателем в нем светодиод.

Если приемником излучения является фотодиод, к нему подключите элемент оптрона включите, соблюдая полярность, в цепочку, состоящую из источника постоянного напряжения в несколько вольт, резистора, рассчитанного таким образом, чтобы ток через приемник излучения не превысил допустимого, и мультиметра, работающего в режиме измерения тока на соответствующем пределе.

Теперь введите излучатель оптопары в рабочий режим. Для включения светодиода пропустите через него в прямой полярности постоянный ток, равный номинальному. На лампу накаливания подайте номинальное напряжение. Неоновую лампу или светоизлучающий конденсатор, соблюдая осторожность, подключите к сети через резистор сопротивлением от 500 кОм до 1 МОм и мощностью не менее 0,5 Вт.

Фотоприемник должен среагировать на включение излучателя резким изменением режима. Попробуйте теперь несколько раз выключить и включить излучатель. Фототиристор и фоторезистор останутся открытыми и после снятия управляющего воздействия вплоть до отключения их питания. Остальные типы фотоприемников будут реагировать на каждое изменение управляющего сигнала.Если оптрон имеет открытый оптический канал, убедитесь в изменении реакции приемника излучения при перекрытии этого канала.

Сделав вывод о состоянии оптрона, экспериментальную установку обесточьте и разберите. После этого впаяйте оптопару обратно в плату либо замените на другую. Продолжите ремонт устройства, в состав которого входит оптрон.

Оптопара или оптрон состоит из излучателя и фотоприемника, отделенных друг от друга слоем воздуха или прозрачного изолирующего вещества. Они не связаны между собой электрически, что позволяет использовать прибор для гальванической развязки цепей.

Инструкция

К фотоприемнику оптопары присоедините измерительную цепь в соответствии с его типом. Если приемником является фоторезистор, используйте обычный омметр, причем, полярность неважна. При использовании в качестве приемника фотодиода подключите микроамперметр без источника питания (плюсом к аноду). Если сигнал принимается фототранзистором структуры n-p-n, подключите цепь из резистора на 2 килоома, батарейки на 3 вольта и миллиамперметра, причем, батарейку присоедините плюсом к коллектору транзистора. В случае, если фототранзистор имеет структуру p-n-p, поменяйте полярность подключения батарейки на обратную. Для проверки фотодинистора составьте цепь из батарейки на 3 В и лампочки на 6 В, 20 мА, подключив ее плюсом к аноду динистора.

В большинстве оптронов излучателем является светодиод либо лампочка накаливания. На лампочку накаливания подайте ее номинальное напряжение в любой полярности. Можно также подать переменное напряжение, действующее значение которого равно рабочему напряжению лампы. Если же излучателем является светодиод, подайте на него напряжение 3 В через резистор на 1 кОм (плюсом к аноду).

Чтобы быстро проверить работоспособность оптопар радиолюбители делают различные схемы тестеров которые сразу показывают работает ли данная оптопара или нет, сегодня предложу спаять самый простой прибор-тестер для проверки оптопар. Данный пробник может проверять оптопары как в четырёхвыводном корпусе так и шести, а пользоваться им проще простого, вставил оптопару и сразу видишь результат!

Необходимые детали для тестера оптопар:

  • Конденсатор 220 мкФ х 10В;
  • Панелька для микросхемы;
  • Резистор от 3 кОм до 5,6 кОм;
  • Резистор от 1 кОм;
  • Светодиод;
  • Блок питания на 5В.

Как сделать прибор для проверки оптопар, инструкция:

Тестер оптопар работает от 5 вольт, если меньше то не все типы оптопары могут работать корректно, блоком питания может послужить любая зарядка для мобильного телефона. При правильной вставки на панель тестера рабочей оптопары будет вспыхивать светодиод, что означает что с ней всё в порядке, периодичность вспышек зависит от ёмкости электролитического конденсатора. В случае если оптопара сгоревшая или же вставлена не той стороной светодиод зажигаться не будет или же если будет пробой транзистора внутри оптопары то светодиод будет просто светиться но не моргать.

Гнездо для проверки оптопар сделано из панельки для микросхемы и в одном конце оставлено 4 пина, для проверки оптопары в 4-х выводном корпусе, а на втором конце панельки оставлено 5 контактов для 6-ти выводного корпуса. Остальные детали прибора для проверки оптопар я запаял навесным монтажом на контактах панельки но при желанию можно вытравить плату.

Осталось подобрать подходящий корпус и простой тестер оптопар готов!

Тестер для проверки оптопар

Выход из строя оптопары - ситуация хоть и редкая, но случающаяся. Поэтому, распаивая на запчасти телевизор, не будет лишним проверить PC817 на исправность, чтобы не искать потом причину, по которой свежеспаянный блок питания не работает. Можно также проверить пришедшие с Aliexpress оптроны, причём не только на брак, но и на соответствие параметрам. Помимо пустышек, могут встретиться экземпляры с перевёрнутой маркировкой, а более быстрые оптопары на деле могут оказаться медленными.

Описываемое здесь устройство поможет определить как исправность распространённых оптронов PC817, 4N3x, 6N135-6N137, так и их скорость. Оно выполнено на микроконтроллере ATMEGA48, который может быть заменён на ATMEGA88. Проверяемые детали можно подключать и отключать прямо во включенный тестер. Результат проверки отображается светодиодами. Светодиод ERROR светится при отсутствии подключенных оптронов или их неисправности. Если оптрон, будучи установленным в своё гнездо, окажется исправным, то загорится соответствующий ему светодиод OK. Одновременно с этим загорится один или несколько светодиодов TIME, соответствующих скорости. Так, для самого медленного, PC817, будет гореть только один светодиод - TIME PC817, соответствующий его скорости. Для быстрых 6N137 будут светиться все 4 светодиода скорости. Если это не так, то оптрон не соответствует данному параметру. Значения шкалы скорости PC817 - 4N3x - 6N135 - 6N137 соотносятся как 1:10:100:900.

Схема тестера для проверки оптопар очень простая:


нажми для увеличения
Мы развели печатную плату под питание через micro-USB разъём. Для проверяемых деталей можно установить цанговые или обычные DIP-панельки. За неимением таковых мы установили просто цанги.


Фьюзы микроконтроллера для прошивки: EXT =$FF, HIGH=$CD, LOW =$E2.

Печатная плата (Eagle) + прошивка (hex).