Лошади, мангуп, крым - мой путь. Сферические (купольные) дома: конструкции, особенности планировки Сфера расчет купольный дом

18.03.2024

Заказать проектирование и строительство купольного дома под ключ Вы сможете на сайте dizayndoma.ru , где также представлено подробное описание всех этапов работ и финансирования с указанием стоимости.

Подробным калькулятором для расчета длин стропильных частей купольного дома вы можете воспользоваться на Интернет-ресурсе - www.acidome.ru , очень удобный калькулятор с описанием для применения. А мы также предоставляем видео, которое можно использовать как видео-инструкцию по пользованию данным калькулятором.

На видеоролике видно, каким образом нужно использовать калькулятор и как правильно выбирать длину стропильной части элементов купольного дома. Вы сможете самостоятельно рассчитать длину и изготовить все деревянные стропила, чтобы в последствии построить купольный дом своими руками.

В нашей компании вы можете заказать вентиляцию бризер для дома цена Тион о2 составляет 21 300 руб. Возможны различные комплектации вентиляционной установки дополнительными фильтрами для очистки воздуха по медицинским стандартам. Использвание Бризер Тион О2 является отличной профилактикой таких заболеваний дыхательной системы, как астма, бронхит или аллергия.

Отправить заявку на строительство купольного дома можете

Помимо расчета длин конструктивных элементов, видео покажет, как правильно обработать поверхности всех деревянных деталей, где просверлить отверстия под крепление болтовыми соединениями и как соединить все конструктивные элементы коннекторами.

Вам нужен надежный кондиционер? Рекомендуем заказать инверторную сплит-систему Gree с современным дизайном внутренних блоков. Для оформления заказа перейдите по ссылке.

Применяемое оборудование и инструменты

Конечно, необходимо будет использовать сверлильный и токарный станки, а также другой ручной инструмент, но вы хотя бы наглядно увидите, как это сделать правильно.

Просмотр данного видеоролика вам позволит произвести сборку купольной конструкции вашего дома своими руками, вы увидите подробную технологию строительства конструкции и ответы на многие вопросы, связанные с возведением вашего дома-купола.

Калькулятор для расчета деталей купольного дома показывает в разных цветах различные конструктивные детали, это очень удобный инструмент, без которого вам просто не обойтись при самостоятельном проведении строительных работ.

Как правильно производить расчет длин стропильных частей?

Обязательно обратите внимание, при пользовании калькулятором, на то, что использование коннектора другого вида, который отличается от представленного в видеоролике, может повлечь за собой необходимость в изготовлении стропильных частей других длин.

Всё будет зависеть от того, какое расстояние между болтовыми соединениями стропильных частей, исходя из этого, уже и следует производить правильный расчет длины.

Также обратите внимание и на то, что коннекторы могут быть пятилучевыми или шестилучевыми, все зависит от места их размещения в конструкции самого каркаса купольного дома и от того, сколько стропил, они будут соединять.

На въезде вашей территории загородного дома мы рекомендуем установить ворота с автоматикой и аксессуарами безопасности. Такими автоматическими воротами будет не только комфортно управлять, но и совершенно безопасно.

Расчет геодезического купола производится по заданному радиусу (площади поверхности основания), с целью получить:

  • Расчетные размеры ребер и их количество
  • Количество и тип требуемых коннекторов
  • Значения углов между ребрами
  • Требуемые высоту, общую площадь постройки
  • Площадь поверхности купола

Площадь основания купола ассчитывается по заданному радиусу S=π *R 2 . При этом надо учитывать, что реальная площадь получится несколько меньше, вследствие того, что радиус купола считается, обычно, по внешней поверхности полусферы (по "вершинам"), и стенки купола имеют также определенную толщину.

Высота геодезического купола пределяется по заданному диаметру, и может быть для четной частоты разбиения 1/2, 1/4 диаметра (при большой частоте может быть и 1/6, 1/8). Для нечетной - 3/8, 5/8 диаметра (и т.д.).

4V, 1/4 сферы 4V, 1/2 сферы

Площадь поверхности геодезического купола ассчитывается по известной формуле расчета площади сферы S=4π *R 2 . Для купола, равного 1/2 сферы, формула будет иметь вид S=2π *R 2 . В более сложному случае, когда речь идет о площади сегмента, сферы, формула расчета S=2π *RH , где H - высота сегмента.

Расчет конструктивных элементов геодезического купола ожно производить с использованием готовых таблиц, в которых заданы:
  1. Количество ребер купола одинаковой длины - ребра A, B, C, D, E, F, G, H, I. У купола с частотой 1V одно ребро - A. У купола с частотой 2V два ребра - A, B. У купола с частотой 3V три ребра - A, B, C. И т.д.
  2. Количство и тип используемых коннекторов - 4-х конечные, 5-ти конечные, 6-ти конечные.
  3. Коэффициенты пересчета длин ребер купола на радиус купола. К примеру, если вы хотите построить купол с частотой 2V высотой 1/2 и радиусом 3,5 метра, вам надо величину радиуса (3,5) умножить на коэффициент 0,61803 для определения длины ребра А, и умножить на коэффициент 0,54653 для определения длины ребра B. Получим: А=2,163м, В=1,912м.

1V купол

Ребра Коэффициенты Количество
A 1.05146 25
5-ти конечный коннектор 6
4-х конечный коннектор 5

2V купол

Ребра Коэффициенты Количество для 1/2
A 0,61803 35
B 0,54653 30
4-х конечный коннектор 10
5-ти конечный коннектор 6
6-ти конечный коннектор 10

3V купол

Ребра Коэффициенты Количество для 3/8 Количество для 5/8
A 0,34862 30 30
B 0,40355 40 55
C 0,41241 50 80
4-х конечный коннектор 15 15
5-ти конечный коннектор 6 6
6-ти конечный коннектор 25 40

4V купол

Ребра Коэффициенты Количество для 1/2
A 0,25318 30
B 0,29524 30
C 0,29453 60
D 0,31287 70
E 0,32492 30
F 0,29859 30
4-х конечный коннектор 20
5-ти конечный коннектор 6
6-ти конечный коннектор 65

5V купол

Ребра Коэффициенты Количество для 5/8
A 0,19814743 30
B 0,23179025 30
C 0,22568578 60
D 0,24724291 60
E 0,25516701 70
F 0,24508578 90
G 0,26159810 40
H 0,23159760 30
I 0,24534642 20
4-х конечный коннектор 25
5-ти конечный коннектор 6
6-ти конечный коннектор 120

Методика расчета купола зависит от его типа и вида нагрузки -- осесимметричной и неосесимметричной. К первой относится собственный вес конструкции, сплошной снеговой покров и симметрично подвешенное оборудование. Ко второй -- ветровая нагрузка, односторонняя снеговая нагрузка и несимметрично расположенное оборудование. При отношении f/D ? 1/4 ветровой напор создает на поверхности купола отсос, который разгружает купол и может не учитываться. Однако легкие, например, пластмассовые купола необходимо проверять расчетом на действие отсоса ветра.

На стадии определения конструктивного решения тонкостенного купола применяют приближенные способы расчета. Они дают вполне достоверные результаты, зачастую с точностью выше реальных допусков, практикуемых при подборе сечений элементов купола. В рабочем проектировании пользуются точными методами, ориентированными на реализацию вычислений с помощью компьютера.

Тонкостенные купола можно рассчитывать по безмоментной теории, условиями применения которой являются: плавность изменения толщины оболочки, радиуса кривизны ее меридиана, интенсивности нагрузки; свободное перемещение оболочки в радиальном и кольцевом направлениях. Безмоментное опирание купола по внешнему контуру представляется как непрерывное, шарнирно-подвижное, образуемое стерженьками-опорами, направленными по касательным к меридиональным сечениям оболочки. В этом случае оболочка будет статически определима (рис, 9.3), При нарушении названных условий напряженное состояние купола должно определяться с учетом действия изгибающих моментов в краевых зонах.

В безмоментном напряженном состоянии оболочка купола работает как тонкая мембрана и поэтому подвержена только нормальным усилиям, действующим в ее срединной поверхности. На практике это положение можно принять в отношении всего купола кроме приопорной зоны, где появляются изгибающие моменты.

Рассмотрим купол произвольного очертания, двоякая кривизна которого в каждой точке определяется двумя радиусами кривизны R1 и R2. В общем случае элемент оболочки купола, ограниченный двумя меридиональными и двумя кольцевыми сечениями, находится под воздействием нормальных усилий -- меридионального N1 и кольцевого N2, а также касательного усилия S, отнесенных к единице длины сечения (см. рис. 9.3 а). При загружении купола осесимметричной нагрузкой (собственный вес, снег на всей поверхности) усилие S = 0, а усилия N1 и N2 определяют из условий статики как функции только угловой координаты ц (широты).

Напряженное состояние купола при осесимметричной нагрузке характеризуется следующим уравнением равновесия:

где qц -- нормальная к поверхности купола составляющая внешней нагрузки q (на 1 м2 поверхности купола).

Для определения меридионального усилия N1 кольцевым горизонтальным сечением отсекается верхняя часть купола и рассматривается ее равновесие (см. рис. 9.3 в). На отсеченный сегмент действует сжимающая сила Qц, которая представляет собой сумму всех нагрузок, приложенных выше рассматриваемого сечения. Исходя из условия УZ=0, она должна уравновешиваться меридиональными усилиями N1 по периметру кольцевого сечения радиуса r:

где (ц--текущая угловая координата (отсчитывается от оси вращения); r = R2sinц.

Следовательно,

Кольцевое усилие N2 находят из уравнения (9.2):

Распор купола определяется как горизонтальная проекция меридионального усилияN1

Распор в уровне опорного кольца (ц = ц0):

где N1,0 -- меридиональное усилие в уровне опорного кольца; ц0 -- половина центрального угла дуги оболочки в меридиональном направлении; r0 -- радиус опорного кольца; Qц,0-- нагрузка, действующая на купол.

Распор Fh действует на опорное кольцо в радиальном направлении, поэтому растягивающее усилие в опорном кольце:

Сжимающее усилие в верхнем кольце от нагрузки q при соответствующей текущей координате ц определяется аналогично (9.8).

Под действием вертикальной нагрузки купол сжат, а вблизи опорного кольца растянут. Существует нейтральное кольцевое сечение («параллель»), вдоль которой усилия N2 равны нулю. Координата этой параллели определяется формой купола и видом нагрузки. Ее можно вычислить, приравняв к нулю выражение в скобках в формуле (9.5).

Дальнейшее рассмотрение оболочки вращения под действием конкретных нагрузок проведем на примере сферического купола. Геометрически он наиболее прост, а основные выводы качественного порядка, сделанные для сферы, могут быть распространены на купола других форм.

Для сферы R1 = R2 = R формулы (9.4) и (9.5) приобретают вид:

Формулы расчета сферических куполов на действие нагрузок от собственного веса g(кН/м2 поверхности купола) и снега s (кН/м2 перекрываемой куполом площади) приведены в , , . Распределение меридиональных и кольцевых усилий в полусферическом куполе от вертикальных нагрузок показано на рис. 9.4.

Угол ц, при котором кольцевые усилия в куполе меняют знак, превращаясь из сжимающих в растягивающие, равен ~ 52° при действии собственного веса и 45° -- при полной снеговой нагрузке. Для того, чтобы избежать растягивающих кольцевых усилий, стрела подъема купола f не должна превышать 1/52). Более подъемистые купола нуждаются в специальных кольцевых затяжках в нижних приконтурных зонах. Аналогичные вычисления усилий и критических величин углов могут быть выполнены для куполов вращения других очертаний.


При действии горизонтальных сил (ветер, сейсмика) и несимметричных нагрузок (одностороннее расположение снега) напряженное состояние купола характеризуется, кроме нормальных усилий N1 и N2, также касательными (сдвигающими) усилиями S. Расчет существенно усложняется и его выполняют по специальной методике.

Усилия N1 и N2 в гладкой оболочке купола, как правило, невелики, поэтому ее толщина определяется, главным образом, конструктивными или технологическими соображениями.

Особое внимание уделяют устойчивости купола. Формулы ее проверки, характерные для каждого материала, даются при рассмотрении особенностей куполов из различных материалов.

Волнистые и складчатые купола составляют особую группу. С архитектурной точки зрения они весьма эффектны, обладают богатой пластикой и немалыми конструктивными достоинствами, связанными с жесткостью формы. Будучи сплошностенчатыми (гладкими) или решетчатыми, они могут быть отнесены, соответственно, к тонкостенным или ребристым куполам. В железобетоне выполняют волнистые и складчатые купола, а из клееной древесины -- чаще складчатые.

Данная статья - перевод зарубежной заметки о возведении купольного каркаса для теплицы своими руками. Убрано лишнее, оставлена лишь техническая часть. Используя эти сведения, можно применить эти расчеты для строительства купольной теплицы или дома своими руками.

Когда дело доходит до садоводства в холодном климате, всегда нужна теплица. Она расширяет вегетационный период и дает растениям гораздо больше тепла. При выборе конструкции теплицы, был выбран интересный вариант «Купольный дом».

В пользу применения сферической формы склоняют факторы:

  • Интересная, легкая конструкция;
  • Стабильная к ветровой и снеговой нагрузке;
  • Оптимальное поглощение света;
  • Наибольшая площадь;
  • Интригующий внешний вид.

Как построить сферическую конструкцию

На нашем примере будет показано, как построить сферическую конструкцию.

Материалы для использования

  • Используется необработанные пиломатериалы (ель), окрашенные перед сборкой.
  • Шурупы.
  • Покрытие. Использован парниковый прозрачный пластик, но также можно покрыть купол термоусадочной пленкой, поликарбонатом или Solawrap ™ фольгой.
  • В конструкцию добавлены автоматические открыватели окон и петли для дверей и окон.

Для расчета элементов купольной теплицы был использован . Плотность элементов конструкции может быть 2В, 3В, 4В. Меньший купол может иметь более низкую плотность. Для 18‘ конструкции выбрана плотность 3В. Если больше 18‘, то должно быть 4В. Имейте в виду, что ширина купола будет вдвое меньше, чем в высоту.

Есть некоторая проблема с 3В куполом. Дело в том, что красные распорки в нижней части, как показано схеме на 2,777% больше, чем все другие красные распорки. Большинство расчетов, найденных в интернете, не учитывают эту маленькую корректировку и в конечном итоге получается неровное основание. Конечно, можно выровнять основание, но гораздо проще отрегулировать длину 10 красных стоек, всех промежуточных пятиугольников.

Почему выбрана 3В, хотя это более сложный вариант? Место на участке было для 18-купола. Так как, размер в 2В сделает треугольники слишком большими и слишком маленький с 4В. Если вы хотите, избежать проблемы выравнивания 3В купола и есть свободное пространство, выбирайте конструкцию с большим размером с плотностью 4В! После составления плана, нужно его распечатать в цвете, для руководства им на строительной площадке.

Инструменты для строительства

  • Измерительная лента;
  • Квадрат;
  • Карандаш;
  • Защитные очки;
  • Дрель;
  • Циркулярная пила;
  • Уровень.

Заготовка стоек конструкции

Залог успешной постройки геокупола - точность расчета стоек (все дальнейшие расчеты ведутся в метрической системе). Вот пример:

На рисунке указаны:

  1. Алфавитный указатель стоек;
  2. Количество стоек этого типа;
  3. Числовое обозначение размеров вершин, к которой примыкают края;
  4. Значение плоского угла к плоскости наружной кромки;
  5. Значение двугранного угла между наружной плоскости края и плоскости разреза;

Трехмерное представление законцовки стойки в 3D

Готовые стойки геодезического купола

Опорная стена высотой 0,3 м построена. Некоторые делают опорные стены высотой до 3 метров.

Приступаем к сборке теплицы. Процесс похож на игру Lego в большем масштабе. Стойки присоединены и удерживаются на месте с помощью винтов, как указано на рисунке ниже. Рекомендуем предварительно просверлить все отверстия, это предохранит древесину от раскалывания.

Верхняя часть теплицы собирается на земле и устанавливается как единое целое. Это немного тяжело и требуется помощь нескольких людей.

Как укрыть купол

Покрытие сложно из-за формы. также хорошо вычисляет размер граней, что особенно важно для более качественного покрытия теплицы.

Двери и окна

Дверь смонтирована непосредственно в пятиугольнике, как показано на картинке, она имеет две вертикальные стойки, как косяки и считается хорошем решением. Это не прерывает форму купола, хорошо подходит в зимних и дождливых условиях. Снег и вода просто соскальзывают.

Теплица имеет 2 окна с автоматическим открыванием. Тем не менее, если не используется система охлаждения, то двух окон будет не достаточно. Дверь и окна построены из одних и тех же стоек и покрыты пластиком.

Вот так выглядит готовая купольная теплица:



Расчет геодезического купола производится по заданному радиусу (площади поверхности основания), с целью получить:

  • Расчетные размеры ребер и их количество
  • Количество и тип требуемых коннекторов
  • Значения углов между ребрами
  • Требуемые высоту, общую площадь постройки
  • Площадь поверхности купола

Площадь основания купола рассчитывается по заданному радиусу - S=π *R 2 . При этом надо учитывать, что реальная площадь получится несколько меньше, вследствие того, что радиус купола считается, обычно, по внешней поверхности полусферы (по "вершинам"), и стенки купола имеют также определенную толщину.

Высота геодезического купола определяется по заданному диаметру, и может быть для четной частоты разбиения 1/2, 1/4 диаметра (при большой частоте может быть и 1/6, 1/8). Для нечетной - 3/8, 5/8 диаметра (и т.д.).

4V, 1/4 сферы 4V, 1/2 сферы

Площадь поверхности геодезического купола рассчитывается по известной формуле расчета площади сферы - S=4π *R 2 . Для купола, равного 1/2 сферы, формула будет иметь вид - S=2π *R 2 . В более сложному случае, когда речь идет о площади сегмента, сферы, формула расчета - S=2π *RH , где H - высота сегмента.

Расчет конструктивных элементов геодезического купола можно производить с использованием готовых таблиц, в которых заданы:
  1. Количество ребер купола одинаковой длины - ребра A, B, C, D, E, F, G, H, I. У купола с частотой 1V одно ребро - A. У купола с частотой 2V два ребра - A, B. У купола с частотой 3V три ребра - A, B, C. И т.д.
  2. Количство и тип используемых коннекторов - 4-х конечные, 5-ти конечные, 6-ти конечные.
  3. Коэффициенты пересчета длин ребер купола на радиус купола. К примеру, если вы хотите построить купол с частотой 2V высотой 1/2 и радиусом 3,5 метра, вам надо величину радиуса (3,5) умножить на коэффициент 0,61803 для определения длины ребра А, и умножить на коэффициент 0,54653 для определения длины ребра B. Получим: А=2,163м, В=1,912м.

1V купол

2V купол

Ребра Коэффициенты Количество для 1/2
A 0,61803 35
B 0,54653 30
4-х конечный коннектор 10
5-ти конечный коннектор
6
6-ти конечный коннектор
10

3V купол

Ребра Коэффициенты Количество для 3/8 Количество для 5/8
A 0,34862 30 30
B 0,40355 40 55
C 0,41241 50 80
4-х конечный коннектор
15 15
5-ти конечный коннектор
6 6
6-ти конечный коннектор
25 40

4V купол

Ребра Коэффициенты Количество для 1/2
A 0,25318 30
B 0,29524 30
C 0,29453 60
D 0,31287 70
E 0,32492 30
F 0,29859 30
4-х конечный коннектор
20
5-ти конечный коннектор
6
6-ти конечный коннектор
65

5V купол

Ребра Коэффициенты Количество для 5/8
A 0,19814743 30
B 0,23179025 30
C 0,22568578 60
D 0,24724291 60
E 0,25516701 70
F 0,24508578 90
G 0,26159810 40
H 0,23159760 30
I 0,24534642 20
4-х конечный коннектор
25
5-ти конечный коннектор
6
6-ти конечный коннектор
120